Efficient Synthesis of the C1- C7 Fragment of Didemnaketal A

$$
\begin{gathered}
\text { Xue Qiang } \mathrm{LI}^{1,2} \text {, Xue Zhi ZHAO }{ }^{1} \text {, Pei Nian LIU }{ }^{1} \text {, Yong Qiang TU }{ }^{1 *} \\
{ }^{1} \text { Department of Chemistry and State Key Laboratory of Applied Organic Chemistry, } \\
\text { Lanzhou University, Lanzhou } 730000 \\
{ }^{2} \text { Department of Chemistry, Ningxia University, Yinchuan } 750021
\end{gathered}
$$

Abstract: The stereoselective synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment (3R,4S,6R)-3,4-di[(tert-butylAbstract: The stereoselective synthesis of the $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment is ar, $4 \mathrm{~S}, 6 \mathrm{R}$)-3,4-dil (tert-butyl-
dimethylsilyl)oxy]-7-hydroxy-6-methylheptan-2-one, which is the crucial intermediate for synthesis of the HIV-1 protease inhibitive didemnaketals, was developed via 12 steps from the natural (+)-pulegone.

Keywords: Didemnaketals, stereoselective synthesis, intramolecular chiral induction, Mitsunobu reaction.

Didemnaketals $\mathrm{A}\left(\mathrm{IC}_{50}=2 \mu \mathrm{~mol} / \mathrm{L}\right)$ and $\mathrm{B}\left(\mathrm{IC}_{50}=10 \mu \mathrm{~mol} / \mathrm{L}\right)$, as significant inhibitors to HIV-protease ${ }^{1}$, were first reported by D. J. Faulkner et al. in 1991, and the absolute configurations of them were further determined in this group in 2002^{2}. Based on our previous work 3, we redesigned and synthesized the $\mathrm{C}_{1}-\mathrm{C}_{7}$ fragment $3(3 R, 4 S, 6 R)$-3,4-di-[(tert-butyldimethylsilyl)oxy]-7-hydroxy-6-methylheptan-2-one, which is crucial for the synthesis of didemnaketals as shown in the retrosynthetic analysis outlined in Scheme 1.

Scheme 1

This new approach to the fragment $\mathbf{3}$ is commenced with the natural (+)-pulegone 4. The important intermediate enone 6, which could not be obtained in our earlier primary

[^0]investigation, was conveniently prepared from the precursor 5 through two transformations involving Shapiro coupling with $\mathrm{CH}_{3} \mathrm{I}$ and regioselective ozonolysis at $-78^{\circ} \mathrm{C}^{4}$. With enone 6 in hand, compound 9 could be afforded by a series of the intramolecular chiral induction. Following the complete stereochemical inversion of C-1 hydroxy in 9 using Mitsunobu reaction, the construction of all desired stereocenters was efficiently accomplished to give compound 10, which gave rise to the fragment $\mathbf{3}$ via three steps.

Scheme 2

Reagents and conditions: a) p - $\mathrm{TsNHNH}_{2}, \mathrm{MeOH}, \mathrm{HCl}$ (Cat.); b) i. n - BuLi , TMEDA, $-78^{\circ} \mathrm{C}$; ii. MeI, $0^{\circ} \mathrm{C}$ c) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; d) i. LDA, TMSCl $-78^{\circ} \mathrm{C}$; ii. m - $\mathrm{CPBA}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$; iii. $(n-\mathrm{Bu})_{4} \mathrm{NF}$
 (n - Bu$)_{4} \mathrm{NF}, \mathrm{THF} ; \mathrm{h}$) i. $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}, \mathrm{PPh}_{3}, \mathrm{DEAD}, \mathrm{C}_{6} \mathrm{H}_{6}$; ii. MeOH, KOH, $\mathrm{H}_{2} \mathrm{O} ;$ i) t-BuNH $2, \mathrm{~K}$, THF j) TBSCl, imidazole, DMF, $\left.50^{\circ} \mathrm{C} ; \mathrm{k}\right) \mathrm{NaBH}_{4}, \mathrm{EtOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 7)$.

Acknowledgments

We are grateful for financial support of the NNSFC (Grant No. 30271488, 29925205, 203900501 and QT program).

References and Notes

1. B. C. M. Potts, D. J. Faulkner, J. A. Chan, et al., J. Am. Chem. Soc., 1991, 113, 6321
2. C. E. Salomon, D. H. Williams, E. Lobkovsky, et al., Org. Lett., 2002, 4 (10), 1699.
3. Y. X. Jia, B. Wu, X. Li, et al., Org. Lett., 2001, 3 (6), 847.
4. (a) J. E. Stemke, A. R. Chamberlin, F. T. Bond, Tetrahedron Lett., 1976, 34, 2947. (b) M. G. Silvestri, J. Org. Chem., 1983, 48, 2419.
5. Compound 3: $[\alpha]_{\mathrm{D}}^{25}=-10\left(c 1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(200 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 4.09(\mathrm{~d}, 1 \mathrm{H}, J=$ $3.6 \mathrm{~Hz}, \mathrm{H}-3$), $3.94-3.92$ (m, 1H, H-4), 3.42 (dd, $2 \mathrm{H}, J=5.1,5.8 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $2.20(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}-1)$, $1.73-0.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{OH}, \mathrm{H}-5\right.$, and H-6), $0.94\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.92\left(\mathrm{~d}, 3 \mathrm{H}, J=4.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90(\mathrm{~s}$ $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SiCH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{M} \mathrm{Hz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}$) : 210.7, 80.6, 73.6, 68.1, 37.9, 32.0, 28.3, 25.8 (6C), 18.2, 18.0, 17.4, -4.4, -4.7, -4.8, -5.1; FAB-MS $m / z(\%): 405\left(\mathrm{M}^{+}+1,5\right), 387$ (80), 347 (24), 245 (14), 215 (100), 115 (100). HRMS (ESI): calcd. for $\mathrm{C}_{20} \mathrm{H}_{44} \mathrm{Si}_{2} \mathrm{O}_{4} \mathrm{Na}$ (M+Na) 427.2670, found 427.2673.

Received 18 June, 2003

[^0]: E-mail: tuyq@lzu.edu.cn

